Diagram Kendali Nonparamterik Composite Exponentially Weighted Moving Average (CEWMA) Sign dalam Proses Plating Aksesori Mobil PT. XYZ
Abstract
Abstract. Control charts are one of the tools in Statistical Process Control (SPC) that are graphically used to control the production process. The first control chart to exist was the Shewhart control chart, but the control chart is not sensitive in detecting small shifts. So the alternative is the EWMA control chart which is able to detect small shifts, but there is still a problem because this diagram has the assumption that the observation process is normally distributed. Then a Nonparametric EWMA Sign control chart is proposed which can detect small shifts when the data conditions are not normally distributed. Furthermore, the combination of Shewhart and EWMA statistics has been done which aims to improve the accuracy of the diagram. Combining two EWMA statistics has also been done but assuming the distribution of quality characteristics is normal. Raza et al., 2022 proposed the CEWMA Sign Nonparametric control diagram method by combining two EWMA statistics to increase the sensitivity of the diagram. This control chart is more flexible to use because the parameter value λ in both EWMA statistics can be different ( and ). In this thesis we apply the CEWMA Sign Nonparametric control chart to the data of the car accessory plating process at PT. XYZ which is a final or finishing process that has objectives including to beautify the appearance and protect a metal from interaction with the environment.
Abstrak. Diagram kendali merupakan salah satu alat dalam Statistical Process Control (SPC) yang secara grafis digunakan untuk mengontrol proses produksi. Diagram kendali yang pertama kali ada yaitu diagram kendali Shewhart, tetapi diagram kendali tersebut tidak sensitif dalam mendeteksi pergeseran yang kecil. Sehingga alternatifnya yaitu diagram kendali EWMA yang mampu mendeteksi pergeseran yang kecil, tetapi masih ada masalah karena diagram ini memiliki asumsi bahwa proses pengamatan berdistribusi normal. Kemudian diusulkanlah diagram kendali Nonparametrik EWMA Sign yang dapat mendeteksi pergeseran kecil saat kondisi data tidak berdistribusi normal. Selanjutnya penggabungan statistik Shewhart dan EWMA pernah dilakukan yang bertujuan untuk meningkatkan akurasi diagram. Penggabungan dua statistik EWMA juga pernah dilakukan tetapi dengan asumsi distribusi karakteristik kualitasnya normal. Raza et al., 2022 mengajukan metode diagram kendali Nonparametrik CEWMA Sign dengan menggabungkan dua statistik EWMA untuk meningkatkan sensitivitas diagram. Diagram kendali ini lebih fleksibel untuk digunakan karena nilai parameter pada kedua statistik EWMA dapat berbeda ( dan ). Dalam skripsi ini kami menerapkan diagram kendali Nonparametrik CEWMA Sign pada data proses plating aksesori mobil pada PT. XYZ yang merupakan proses akhir atau finishing yang memiliki tujuan diantaranya adalah untuk memperindah tampilan dan melindungi suatu logam dari interaksi dengan lingkungan.
References
Abbasi, Saddam Akber. 2010. “On Sensitivity of EWMA Control Chart for Monitoring Process Dispersion.” III.
Darmawi. 2018. “Pelapisan Logam.” : 1–103. https://123dok.com/document/zl93446z-welcome-eprints-sriwijaya-university-unsri-online-repository.html.
Graham, M. A., S. W. Human, and S. Chakraborti. 2010. “A Phase I Nonparametric Shewhart-Type Control Chart Based on the Median.” Journal of Applied Statistics 37(11): 1795–1813.
Haq, Abdul. 2013. “A New Hybrid Exponentially Weighted Moving Average Control Chart for Monitoring Process Mean.” Quality and Reliability Engineering International 29(7): 1015–25.
Jones-Farmer, L. Allison, Victoria Jordan, and Charles W. Champ. 2009. “Distribution-Free Phase I Control Charts for Subgroup Location.” Journal of Quality Technology 41(3): 304–16.
Khan, Muhammad Zahir et al. 2018. “A Fuzzy EWMA Attribute Control Chart to Monitor Process Mean.” : 1–13.
Lucas, James M., and Michael S. Saccucci. 1990. “Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements.” Technometrics 32(1): 1–12.
Raza, M. A. et al. 2022. “A New Nonparametric Composite Exponentially Weighted Moving Average Sign Control Chart.” Scientia Iranica 29(1 E): 290–302.
Raza, Muhammad Ali et al. 2020. “A New Nonparametric Double Exponentially Weighted Moving Average Control Chart.” Quality and Reliability Engineering International 36(1): 68–87.
Riaz, Muhammad, and Saddam Akber Abbasi. 2016. “Nonparametric Double EWMA Control Chart for Process Monitoring.” Revista Colombiana de Estadística 39(2): 167–84. http://dx.doi.org/10.15446/rce.v39n2.58914.
Walpole, Ronald E., Raymond H Myers.; “Ilmu Peluang Dan Statistika untuk Insinyur dan Ilmuawan”, edisi ke-4, Penerbit ITB, Bandung, 1995.
Yang, Su Fen, Jheng Sian Lin, and Smiley W. Cheng. 2011. “A New Nonparametric EWMA Sign Control Chart.” Expert Systems with Applications 38(5): 6239–43. http://dx.doi.org/10.1016/j.eswa.2010.11.044.
Risnandar, A., & Achmad, A. I. (2023). Pemodelan Generalized Space Time Autoregressive untuk Meramalkan Indeks Harga Konsumen. Jurnal Riset Statistika, 43–50. https://doi.org/10.29313/jrs.v3i1.1792