Proyeksi Penduduk Indonesia dengan menggunakan Metode Campuran

Fadhil Adiwibowo*, Yayat Karyana

Prodi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung, Indonesia.

Abstract. Badan Pusat Statistik (BPS) has several times made projections of the Indonesian population based on data from the 1971, 1980, 1990, 2000, 2010 Population Census, and based on data from the Survei Penduduk Antar Sensus (SUPAS). This was made in order to fulfill the need for the preparation of Medium Term Development Plans and Long Term Development Plans so that population data was needed until 2045. The population projection methods commonly used are the mathematical method, the component method, and the mixed method. Population projections using the mathematical method are usually used to produce only the total population, while projections using the component method produce the total population and age groups. The mathematical method has a weakness, namely it does not pay attention to demographic components, which include birth, death, and migration. The component method also has a weakness, namely that sometimes the results of the projection are not satisfactory, due to the inaccurate estimation of the migration rate, which changes in each projection period. The mixed method is a combination of the component method and the mathematical method, used to overcome the weaknesses of each method. The mixed method includes the total population taken from the results of the projection using the mathematical method, while the distribution of the population by age group is used from the results of the projection using the component method. Projections of the Indonesian population per 5 years from 2025-2045 using basic data from the 2020 population census, obtained a population of 288,716,143 people, 908,496,679 people, 329,632,420 people, 352,216,214 people, 376,347,271 people.

Keywords: Mixed Method, Component Method, Mathematical Method, Population Projection.

Abstrak. Badan Pusat Statistika (BPS) telah beberapa kali membuat proyeksi penduduk Indonesia berdasarkan data hasil Sensus Penduduk 1971, 1980, 1990, 2000, 2010, dan berdasarkan data hasil Survei Penduduk Antar Sensus (SUPAS). Hal teresebut dibuat dalam rangka memenuhi kebutuhan penyusunan Rencana Pembangunan Jangka Menengah dan Rencana Pembangunan jangka Panjang sehingga diperlukan data kependudukan hingga tahun 2045. Metode proyeksi penduduk yang biasa digunakan adalah metode matematik, metode komponen, metode campuran. Proyeksi penduduk dengan metode matematik biasa digunakan untuk menghasilkan total penduduk saja, sedangkan proyeksi dengan metode komponen menghasilkan total penduduk dan kelompok umur. Metode matematik memiliki kelemahan yaitu tidak memperhatikan komponen demografi yang antara lain kelahiran, kematian, dan migrasi. Metode komponen juga mempunyai kelemahan yaitu terkadang hasil dari proyeksinya kurang memuaskan, karena kurang tepatnya estimasi angka migrasi, yang pada tiap periode proyeksi berubah. Metode campuran merupakan penggabungan dari metode komponen dan metode matematik, digunakan untuk mengatasi kelemahan dari masing masing metode. Metode campuran di dalamnya terdapat total penduduk yang diambil dari hasil proyeksi menggunakan metode matematik sedangkan distribusi penduduk menurut kelompok umur digunakan dari hasil proyeksi menggunakan metode komponen. Proyeksi penduduk Indonesia per 5 tahun dari tahun 2025-2045 dengan menggunakan data dasar hasil sensus penduduk 2020, diperoleh penduduk sebesar 288.716.143 orang, 908.496.679 orang, 329.632.420 orang, 352.216.214 orang, 376.347.271 orang.

Kata Kunci: Metode Campuran, Metode Komponen, Metode Matematik, Proyeksi Penduduk.

^{*}fadhiladiwibowo75@gmail.com, yayatkaryana@gmail.com

A. Pendahuluan

Badan Pusat Statistik (BPS) telah beberapa kali membuat proyeksi penduduk Indonesia berdasarkan data hasil Sensus Penduduk 1971, 1980, 1990, 2000, 2010, dan berdasarkan data hasil Survei Penduduk Antar Sensus (SUPAS) 1985, 1995, 2005, dan 2015 (1).

Laju pertumbuhan penduduk Indonesia dapat kita ketahui berdasarkan kelahiran, kematian, dan migrasi yang mempengaruhi pertumbuhan penduduk itu sendiri, maka dari itu diperlukan suatu proyeksi penduduk yang memberikan informasi mengenai penduduk di masa yang akan datang. Proyeksi yang berdasarkan laju pertumbuhan penduduk belum dapat dilakukan karena hanya mencerminkan total penduduk saja.

Metode-metode proyeksi penduduk antara lain, metode matematik, metode komponen dan metode campuran. Metode matematik biasa digunakan untuk menghitung proyeksi total penduduk suatu wilayah tertentu tanpa memperhatikan komponen demografi yaitu kelahiran, kematian dan migrasi (UN, 1952), namun demikian hasil yang diperoleh metode matematik khususnya di Indonesia, lebih akurat dibanding metode komponen (Karyana, 2002). Menurut BPS bila proyeksi penduduk dihitung untuk jangka waktu yang pendek atau kurang dari 5 tahun baik dengan metode matematik maupun komponen akan didapat hasil jumlah penduduk yang hampir tidak ada perbedaan. Hasil proyeksi metode matematik relatif masih cukup baik jika jangka waktu yang diproyeksikan pendek, ini disebabkan oleh kelahiran, kematian, dan migrasi tidak berubah secara siginifikan. (2)

Pada metode komponen dapat menghasilkan proyeksi penduduk berdasarkan jenis kelamin dan kelompok umur dengan memperhatikan komponen pertumbuhan penduduk yaitu kelahiran, kematian dan migrasi (UN, 1952), namun hasil dari proyeksi menggunakan metode komponen terkadang kurang memuaskan. Hal ini disebabkan oleh kurang tepatnya estimasi angka migrasi, yang pada tiap periode proyeksi berubah, sedangkan estimasi untuk angka kelahiran dan kematian relatif lebih baik (Karyana, 2002). Adapun metode campuran merupakan penggabungan antara kedua metode baik metode matematik dan metode komponen.

Metode campuran dapat digunakan untuk mengatasi kelemahan metode matematik yang hanya dapat melakukan proyeksi penduduk secara total dan mengatasi kelemahan metode komponen yang tidak selalu dapat melakukan proyeksi penduduk secara akurat berdasarkan kelompok umur.

Proyeksi penduduk Indonesia tahun 2000 dengan menggunakan metode komponen dan metode campuran kemudian dibandingkan dengan hasil Sensus Penduduk 2000 ternyata hasilnya bahwa proyeksi dengan metode campuran yang paling mendekati hasil Sensus Penduduk 2000 (3).

Proyeksi penduduk yang terakhir dibuat adalah proyeksi penduduk berdasarkan hasil SUPAS 2015, adapun saat ini telah dilaksanakan Sensus Penduduk 2020 maka untuk memperbaharui proyeksi yang sudah dibuat sebelumnya akan dilakukan perhitungan proyeksi penduduk Indonesia tahun 2025-2045.

Berdasarkan latar belakang diatas, identifikasi masalah dalam penelitian ini adalah bagaimana cara menghitung proyeksi penduduk Indonesia pada tahun 2025–2045 dengan menggunakan Metode campuran.

B. Metodologi Penelitian

Metode campuran merupakan pengembangan dari metode komponen karena baik metode matematik dan metode komponen keduanya dihitung lalu dikombinasikan. Total penduduk diproyeksikan melalui metode matematik, sedangkan proporsi menurut kelompok umur menggunakan metode komponen. Proyeksi dengan metode campuran diperuntukkan jika distribusi penduduk yang dihasilkan kurang tepat dalam metode komponen. Kasus proyeksi penduduk Indonesia yang akan diteliti ini asumsi yang digunakan adalah kelahiran, kematian yaitu model mortalitas dengan model west yang merupakan model umum atau model rata-rata penduduk dunia, namun model west ini belum tentu cocok dengan Indonesia. Model yang baik adalah menghitung sendiri model yang cocok dengan data yang baik, kemudian asumsi yang terakhir adalah migrasi.

Untuk menjelaskan ketiga Metode tersebut selanjutnya, dimisalkan bahwa:

P(x, a)	adalah banyak penduduk berumur x tahun pada tahun awal.
P(x, t, m)	adalah banyak penduduk berumur x tahun pada tahun t dengan Metode Matematik.
P(x, t, k)	adalah banyak penduduk berumur x tahun pada tahun t dengan Metode Komponen.
P(x, t, c)	adalah banyak penduduk berumur x tahun pada tahun t dengan Metode Campuran.
X	adalah umur
	x = 0,1,, w , w umur tertua (umur tunggal), dan
	x = 0-4, 5-9,, 70-74, 75+ (umur dalam kelompok).
P(.,t,m)	adalah total penduduk pada tahun t menggunakan Metode Matematik dengan model pertumbuhan eksponensial, geometrik, linier, atau tanpa pertumbuhan.
P(.,t,m _e)	adalah total penduduk pada tahun t dengan metode matematik jika model pertumbuhan penduduknya eksponensial.
$P(.,t,m_g)$	adalah total penduduk pada tahun t dengan metode matematik jika model pertumbuhan penduduknya geometrik.
$P(.,t,m_l)$	adalah total penduduk pada tahun t dengan metode matematik jika model pertumbuhan penduduknya linear.
P(.,t,k)	adalah total penduduk pada tahun t dengan Metode Komponen $P(.,t,k) = \sum P(x,t,k) \tag{1}$

$$P(.,t,c) \qquad \text{adalah total penduduk pada tahun t dengan Metode Campuran} \\ P(.,t,c) = \sum P(x,t,c) \qquad (2)$$

Metode Matematik

Metode proyeksi penduduk dengan Metode Matematik, umumnya menggunakan model pertumbuhan Eksponensial, Geometrik, dan Linier, atau penduduk tanpa pertumbuhan. Penggunaan model-model tersebut disesuaikan dengan bagaimana pertumbuhan penduduk sebelumnya. Apabila pertumbuhan penduduk mengikuti model pertumbuh eksponensial, maka proyeksinya adalah:

$$P(.,t,m_e) = P_0 e^{rn}$$
(3)

$$P(.,t,m_g) = P_0 (1+r)^n$$
 (4)

$$P(.,t,m_l) = P_0(1+rn)$$
 (5)

di mana:

 P_t adalah proyeksi penduduk pada tahun ke t.

 P_0 adalah penduduk pada tahun dasar proyeksi.

r adalah angka pertumbuhan penduduk.

n adalah jangka waktu proyeksi dalam tahun.

Kasus di Indonesia, meskipun model pertumbuhan penduduknya sudah dapat diprediksi melalui plot data hasil Sensus Penduduk serta SUPAS dan dihitung angka pertumbuhannya, namun untuk proyeksi angka pertumbuhannya sendiri cenderung menurun juga, sehingga perlu diprediksi juga bagaimana penurunan angka pertumbuhan penduduknya.

Metode Komponen

Proyeksi penduduk dengan Metode ini adalah dengan memperhatikan komponen demografi yaitu kelahiran, kematian dan migrasi. Jika penduduk awal tahun yang berumur x tahun adalah P(x,a), dan banyak kematian yang berumur x tahun adalah D(x), serta banyaknya net migran yang berumur x tahun adalah NM(x), maka proyeksi penduduk berumur x tahun pada tahun x tahun tahu

$$P(x,t,k) = P(x,a) - D(x) + NM(x)$$
 (6)

dengan:

$$D(x) = P(x,a) (1 - S_x)$$
 (7)

atau

$$D(x) = P(x,a) - P(x,a) S_x$$

Maka

$$P(x,t,k) = P(x,a) - (P(x,a) - P(x,a) S_x) + NM(x)$$

$$P(x,t,k) = P(x,a) - P(x,a) + P(x,a) S_x + NM(x)$$

$$P(x,t,k) = P(x,a) S_x + NM(x)$$

S_x adalah rasio masih hidup penduduk yang

berumur x tahun, yang didapat dari asumsi

tingkat kematian yang menggunakan level

tabel kematian.

$$NM(x) = \{ASOMR(x) - ASIMR(x)\} P(x,a)$$
(8)

ASOMR(x) adalah Age Specific Out-Migration Rate per orang ASIMR(x) adalah Age Specific In-Migration Rate per orang

Khusus untuk x = 0 tahun,

proyeksi penduduk berumur 0 tahun yaitu P(0,t,k) didapat dari banyaknya kelahiran selama periode proyeksi, yang didapat dari $P(0,t,k) = (\sum ASFR_x \ P_x) \ S_0$ (9) dengan :

- 1. $ASFR_x$ adalah Age Specific Fertility Rate atau Angka Kelahiran per perempuan umur 15-49 tahun
- 2. P_x^f adalah banyak penduduk yang berumur 15 49 tahun
- 3. S₀ adalah rasio masih hidup bayi yang baru lahir, yang didapat dari asumsi tingkat kematian yang menggunakan level tabel kematian

Jika dipisahkan proyeksi bayi laki-laki dan perempuan, maka untuk

bayi perempuan :
$$P^f(0,t,k) = P(0,t,k) \{100/(100+SR)\}$$
 (10)

dan untuk bayi laki-laki adalah : $P^{m}(0,t,k) = P(0,t,k) \{SR/(100+SR)\}$ (11)

SR adalah sex ratio at birth.

Untuk Metode Komponen diperlukan:

1. Data penduduk pada tahun dasar menurut kelompok umur dan jenis kelamin. Data

penduduk pada tahun dasar biasanya digunakan hasil Sensus Penduduk (SP) atau hasil Survey Antar Sensus (SUPAS), dan data tersebut sudah dilakukan prorating

- 2. Tingkat kematian atau level of mortality (level tabel kematian)
- 3. Asumsi pola fertilitas vaitu ASFR (Age Specific Fertility Rate)
- 4. Rasio Jenis Kelamin saat lahir (sex ratio at birth)
- 5. Asumsi pola migrasi, dan di sini diperlukan ASOMR dan ASIMR atau ASNMR.

Metode Campuran

Metode proyeksi penduduk per kelompok umur menggunakan Metode campuran adalah Metode proyeksi penduduk yang merupakan kombinasi antara Metode matematik dan Metode komponen. Dalam Metode campuran proyeksi total penduduk diambil dari hasil proyeksi dengan Metode matematik, sedangkan distribusi menurut kelompok umur diambil dari hasil proyeksi dengan Metode Komponen. Untuk Metode komponen diperlukam asumsi angka fertilitas yaitu TFR atau ASFR, kemudian asumsi mortalitas yaitu level tabel kematian, dan asumsi mobilitas yaitu ASNMR atau angka migrasi.

Misal V(x,t,k) adalah proyeksi proporsi penduduk umur x dengan Metode Komponen. P(x,t,k) dapat dihitung dari persaman :

$$\mathbf{V}(\mathbf{x},\mathbf{t},\mathbf{k}) = \mathbf{P}(\mathbf{x},\mathbf{t},\mathbf{k}) / \mathbf{P}(.,\mathbf{t},\mathbf{k})$$
(12)

P(x,t,k) dari Persamaan (6), dan $P(.,t,k) = \sum P(x,t,k)$. Misal P(x,t,c) adalah proyeksi penduduk berumur x tahun dengan Metode Campuran. Nilainya didapat dari persamaan :

$$\mathbf{P}(\mathbf{x},\mathbf{t},\mathbf{c}) = \mathbf{V}(\mathbf{x},\mathbf{t},\mathbf{c}) \ \mathbf{P}(\mathbf{x},\mathbf{t},\mathbf{c})$$
 (13)

karena diasumsikan total penduduk hasil proyeksi Metode Campuran sama dengan hasil proyeksi Metode Matematik dan distribusi umur proyeksi Metode Campuran sama dengan proyeksi Metode Komponen, maka P(x,t,c) pada Persamaan (13) yang merupakan proyeksi penduduk umur x tahun pata tahun t dengan Metode Campuran menjadi :

$$\mathbf{P}(\mathbf{x},\mathbf{t},\mathbf{c}) = \mathbf{V}(\mathbf{x},\mathbf{t},\mathbf{k}) \, \mathbf{P}(\mathbf{x},\mathbf{t},\mathbf{m}) \tag{14}$$

V(x,t,k) dari Persamaan (12), dan P(.,t,m) dari Persamaan (3) atau Persamaan (4) atau Persamaan (5).

MALPE

Seperti dijelaskan di atas bahwa untuk proyeksi penduduk dengan Metode Komponen diperlukan minimal tiga asumsi, yaitu asumsi tentang kelahiran, kematian dan migrasi. Asumsi kelahiran yang digunakan adalah ASFR (Age specific Fertility Rate) antau Angka Kelahiran Kelompok Umur dan TFR (Total Fetility Rate). Asumsi kematian adalah level tabel kematian, dan yang digunakan adalah Rasio Masih Hidup, sedangkan asumsi migrasi adalah ASNMR (Age Specific Net Migration Rate), atau Angka Migrasi Neto (AMN). Untuk melihat apakah asumsi yang diambil pada periode proyeksi tersebut benar atau tidak, maka dilakukan evaluasi terhadap hasil proyeksi penduduk, dan sebagai pembanding adalah hasil Sensus Penduduk yang dilaksanakan oleh BPS. Hal ini dilakukan karena sementara ini data yang paling dianggap akurat adalah hasil Sensus Penduduk.

Evaluasi kesalahan proyeksi penduduk dilakukan dengan membandingkan antara hasil proyeksi penduduk penduduk aktual Pt yang diambil dari hasil Sensus Penduduk. Apabila kesalahan proyeksi penduduk dinyatakan dengan persentase kesalahan Ft yaitu :

$$F_{t} = \left[\frac{\widehat{P}_{t} - P_{t}}{P_{t}}\right]$$

maka MALPE (Mean Algebraic Percent Error) adalah:

$$MALPE = \frac{\sum F_t}{n}$$

dimana:

Pt = proyeksi penduduk pada t

 $P_t = penduduk aktual$

 F_t = persentase kesalahan

n = banyaknya kelompok umur

pada MALPE arah kesalahan apakah positif atau negatif diperhatikan. Akibatnya apabila MALPE digunakan mungkin saja kesalahan untuk setiap t ada, namun jumlahnya mungkin nol, sehingga menghasilkan harga MALPE = 0, padahal setiap t mungkin ada kesalahannya. Untuk mengatasi hal tersebut dapat digunakan evaluasi kesalahan dengan menggunakan MAPE (*Mean Absolute Percent Error*) atau rata-rata kesalahan absolut.

MAPE

Untuk mengevaluasi kesalahan dengan menggunakan MALPE dapat menghasil MALPE = 0, namun tidak menjamin tidak ada kesalahan untuk setiap t, karena apabila kesalahan positif dan kesalahan negatif seimbang akan menyebabkan MALPE = 0. Tetapi jika tidak ada kesalahan maka MALPE = 0. Karena itu penggunaan MALPE harus sangat hati-hati dalam mengambil kesimpulan. Untuk mengatasi hal tersebut dapat digunakan evaluasi kesalahan menggunakan MAPE (*Mean Absolute Percent Error*) atau rata-rata kesalahan absolut. Dengan menggunakan MAPE arah kesalahan diabaikan, atau kesalahan positif dan negatif dijumlahkan, sehingga apabila setiap t ada kesalahannya, maka harga MAPE tidak akan sama dengan nol.

di mana:

$$F_{t} = \left[\frac{\widehat{P}_{t} - P_{t}}{P_{t}} \right]$$

Maka:

$$MAPE = \frac{\sum |F_t|}{n}$$

P_t = proyeksi penduduk pada t

 $P_t = penduduk aktual$

 F_t = persentase kesalahan

n = banyaknya kelompok umur

C. Hasil Penelitian dan Pembahasan

Proyeksi penduduk Indonesia pada tahun 2025-2045 dibuat dengan data dasar penduduk Indonesia tahun 2020 dihitung dengan Metode Campuran. Hasilnya akan dibandingkan antara hasil proyeksi menggunakan Metode Campuran dengan hasil proyeksi menggunakan metode komponen yang dibuat oleh BPS.

Metode Metamatik

Berdasarkan sensus penduduk dan SUPAS sejak tahun 1971 sampai tahun 2020 didapat bahwa jumlah penduduk Indonesia berturut turut adalah 119,21 juta, 147,49 juta, 179,38 juta, 194,75 juta, 206,26 juta, 237,64 juta, dan 270,20 juta. Apabila diperhatikan dari gambar 1 menunjukkan bahwa model pertumbuhannya linear.

Gambar 1. Trend Penduduk Indonesia

Sumber: Hasil pengolahan

Akan tetapi karena data yang diketahui sedikit sebaiknya model lainnya dalam hal ini geometrik dan eksponensial juga diperhatikan. Selanjutnya akan dicari angka pertumbuhan penduduk menggunakan model matematik dimana perhitungannya sebagai berikut :

- 1. Model matematik linearnya adalah $P_t = P_0(1 + 0.0137024t)$
- 2. Model matematik geometriknya adalah $P_t = P_0(1 + 0.0129242)^t$
- 3. Model matematik eksponensialnya adalah $P_t = P_0 e^{0.0128414t}$ Setelah mengetahui angka laju pertumbuhan penduduk, akan memperoleh nilai

taksiran dari ketiga model matematik diatas. Berdasarkan nilai taksiran dari ketiga maka akan dicari nilai Mean Absolute Presentase Error (MAPE).

Tabel 1. Tabel Nilai Mean Absolute Presentase Error (MAPE)

Model	Angka laju pertumbuhan penduduk	MAPE
Linear	0,013702411	0,002
Geometrik	0,012924247	0,024
Eksponensial	0,012841442	0,041

Sumber: Hasil pengolahan

Tabel diatas menunjukkan bahwa nilai MAPE terkecil adalah model matematik linear sebesar 0,002. Model terbaik untuk melakukan proyeksi penduduk Indonesia dapat dikatakan adalah model matematik linear. Berdasarkan nilai MAPE, model matematik linear merupakan model terbaik untuk melakukan proyeksi penduduk Indonesia. Berikut adalah hasil proyeksi penduduk Indonesia 2025 – 2045 menggunakan model matematik linear :

Gambar 2. Proyeksi Penduduk Indonesia Tahun 2025-2045

Sumber: Hasil pengolahan

Sebelum melanjutkan ke metode komponen akan dihitung evaluasi kesalahan melalui MALPE (Mean Algebraic Percent Error) lalu dikoreksi dengan MAPE (rata-rata persentase kesalahan absolute atau Mean Absolute Presentase Error) untuk proyeksi penduduk yang dilakukan oleh BPS terhadap data realisasi dan juga proyeksi dengan metode komponen yang diteruskan dengan metode campuran.

Hasil yang diperoleh menunjukkan bahwa MALPE dari metode komponen yang dibuat BPS adalah sebesar 2,71 dan metode komponen yang diteruskan dengan campuran sebesar 2,94. Hal ini artinya bahwa proyeksi penduduk metode komponen yang diteruskan dengan campuran kurang baik, dapat dilihat bahwa nilai persentase kesalahan (Ft) bernilai positif dan negatif, ini akan menimbulkan MALPE menjadi mendekati 0 yang artinya tidak terdapat kesalahan proyeksi, maka dari itu perlu dibuat evaluasi kesalahan proyeksi dengan MAPE. Berikut perhitungan evalulasi kesalahan dengan MAPE.

Hasil yang diperoleh menunjukkan bahwa nilai MAPE pada proyeksi metode komponen yang dibuat oleh BPS sebesar 8,02 dan proyeksi dengan metode komponen diteruskan campuran sebesar 8,01. Artinya bahwa proyeksi metode komponen diteruskan campuran lebih baik dibanding dengan metode komponen yang dibuat oleh BPS.

Metode Komponen

Asumsi yang digunakan untuk membuat proyeksi dengan Metode Komponen adalah sebagai berikut:

1. Angka fertilitas per kelompok umur atau ASFR (Age Spesific fertility Rate) dan TFR atau total kelahiran (Total Fertility rate).

TFR atau total kelahiran yang digunakan dalam proyeksi penduduk tahun 2025-2045 berturut turut adalah pada tabel 2 yang didapat dari ASFR sebagai berikut :

Tabel 2. Asumsi TFR

Tahun				ASFI	₹			TFR
ranun	15-19	20-24	25-29	30-34	35-39	40-44	45-49	IFK
2025	0,0395	0,0941	0,1268	0,0935	0,0478	0,0123	0,0017	2,08
2030	0,0395	0,0916	0,1273	0,0924	0,0463	0,0115	0,0016	2,05
2035	0,0397	0,0895	0,1281	0,0916	0,0452	0,0109	0,0016	2,03
2040	0,0400	0,0879	0,1292	0,0911	0,0442	0,0104	0,0016	2,02
2045	0,0403	0,0865	0,1304	0,0908	0,0434	0,0100	0,0016	2,01

Sumber: Hasil pengolahan

Angka TFR pada tahun 2025, 2030, 2035, 2040, 2045 menunjukkan bahwa tiap 1000 perempuan setelah melewati masa suburnya akan melahirkan 2,08; 2,05; 2,03; 2,02; 2,01 bayi laki laki dan perempuan.

2. Level mortalitas

Level yang digunakan dalam proyeksi penduduk tahun 2025-2045 berturut turut adalah pada tabel 3 sebagai berikut :

Tabel 3. Asumsi Level Mortalitas

nomor	Tahun	AHH	level bawah	level atas	AHH bawah	AHH atas	level observasi
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	2025	73,9784	23	24	73,0832	75,6847	23,34
2	2030	74,5568	23	24	73,0832	75,6847	23,57
3	2035	74,9736	23	24	73,0832	75,6847	23,73
4	2040	75,2719	23	24	73,0832	75,6847	23,84
5	2045	75.4846	23	24	73.0832	75.6847	23.92

Sumber: Hasil pengolahan

Hasil perhitungan dengan melihat tabel kematian didapat level mortalitas tahun 2025, 2030, 2035, 2040, 2045 berturut turut adalah 23,34; 23,57; 23,73; 23,84; 23,92.

1. Migrasi

Dalam hal ini migrasi yang digunakan adalah migrasi internasional. Kendala keterbatasan sumber data untuk menghitung migrasi internasional menyebabkan tidak diketahuinya secara pasti berapa besarnya migrasi internasional. Pendekatan pertama untuk memperoleh angka migrasi internasional neto menghasilkan nilai negatif yaitu -1,1 dan pendekatan kedua menunjukkan angka migrasi internasional neto sebesar -0,1. Angka ini memperlihatkan penduduk Indonesia yang keluar lebih banyak daripada penduduk yang masuk di wilayah teritorial Indonesia per 1000 penduduk Indonesia. Namun, rendahnya kualitas data migrasi internasional, tidak diketahuinya secara pasti tentang pola dan arah migrasi internasional, dan sangat dinamisnya perubahan dunia menjadi penentu bagi para pakar untuk menyepakati bahwa migrasi internasional dapat diabaikan dalam pengaruhnya terhadap proyeksi penduduk saat ini (BPS, 2013).

Tabel 4. Proyeksi Penduduk Indonesia Tahun 2025 – 2045 per 5 tahun

kelompok umur	WNT 2025	LK 2025	TOT 2025	WNT 2030	LK 2030	TOT 2030	WNT 2035	LK 2035	TOT 2035
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0-4	11006889	11159834	22166723	10838595	10850893	21689488	10720625	10878226	21598851
5–9	11368197	12126191	23494388	11359347	12108230	23467578	11351505	12091867	23443372
10-14	11575029	12311556	23886585	11563232	12284529	23847761	11552725	12259628	23812354
15-19	11297333	11934227	23231560	11279522	11892242	23171764	11263600	11853472	23117072
20-24	11208508	11836520	23045028	11184622	11788502	22973125	11163189	11744324	22907513
25-29	10641159	11014765	21655924	10611778	10968105	21579883	10585267	10925315	21510582
30-34	10478897	10698214	21177111	10438894	10642541	21081435	10402506	10591421	20993927
35-39	11042632	11118592	22161223	10978577	11033541	22012118	10919644	10955009	21874653
40-44	10309612	10295322	20604933	10210321	10161214	20371535	10117876	10036423	20154299
45-49	9183949	9104586	18288536	9038774	8897771	17936545	8903033	8704976	17608009
50-54	7926060	7791452	15717512	7725104	7484580	15209683	7537645	7200430	14738075
55-59	6378764	6051832	12430596	6115998	5655095	11771093	5873511	5295122	11168633
60-64	4825441	4582614	9408055	4484742	4098853	8583595	4177833	3676300	7854133
65-69	2936726	2874341	5811067	2574326	2391773	4966099	2264175	1997556	4261730
70-74	1734355	1428900	3163254	1362685	1050094	2412779	1075728	775604	1851332
75+	1869697	1354676	3224373	1248606	828233	2076839	839531	510055	1349586
Total	133783247	135683624	269466871	131015123	132136198	263151321	128748393	129495727	258244120
		MK	269466871			263151321			258244120
		MM	288716143			308496679			329632420
	SELISIH	MM-MK	19249272			45345357			71388300

Lanjutan

kelompok umur	WNT2040	LK2040	TOT2040	WNT2045	LK2045	TOT2045
	(11)	(12)	(13)	(14)	(15)	(16)
0-4	10635586	10794497	21430083	10572024	10731795	21303819
5–9	11344385	12076649	23421034	11337779	12062250	23400029
10-14	11543143	12236254	23779397	11534219	12213975	23748194
15-19	11249032	11817017	23066049	11235429	11782230	23017659
20-24	11143513	11702911	22846424	11125092	11663490	22788582
25-29	10560812	10885311	21446123	10537830	10847313	21385143
30-34	10368714	10543583	20912297	10336786	10498116	20834902
35-39	10864408	10881208	21745616	10811849	10810857	21622706
40-44	10030446	9918517	19948963	9946722	9805767	19752489
45-49	8774365	8522888	17297253	8651091	8349166	17000257
50-54	7360606	6934393	14294999	7191811	6683213	13875024
55-59	5647140	4965271	10612411	5433947	4660785	10094733
60-64	3898420	3303818	7202238	3642012	2973246	6615258
65-69	1996129	1672700	3668829	1762794	1403291	3166085
70-74	852062	574923	1426985	676516	427254	1103770
75+	567222	315733	882954	384559	196160	580719
Total	126835982	127145674	253981656	125180461	125108907	250289368
		MK	253981656			250289368
		MM	352216214			37634727
	SELISIH	MM-MK	98234558			126057903

Sumber: Hasil pengolahan

Tabel 4 menunjukkan bahwa metode matematik akan menghasilkan proyeksi penduduk dengan jumlah lebih besar daripada metode komponen. Proyeksi penduduk dalam jangka 9anjang dengan metode matematik akan semakin bias seiring dengan panjangnya periode proyeksi, karena pada periode yang 9anjang kelahiran, kematian, dan mobilitas telah banyak berubah (BPS, 2010).

Selisih total penduduk Indonesia dengan menggunakan metode matematik dan komponen per 5 tahun dari tahun 2025-2045 berturut turut sebesar 19.249.272 orang, 45.345.357 orang, 71.388.300 orang, 98.234.558 orang, 126.057.903 orang.

Metode Campuran

Tabel 5. Proyeksi Penduduk Indonesia Tahun 2025 – 2045 per 5 tahun

Kelompok umur	WNT 2025	LK 2025	TOT 2025	WNT 2030	LK 2030	TOT 2030	WNT 2035	LK 2035	TOT 2035
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0-4	11793162	11957033	23750195	12706265	12720683	25426948	13684205	13885373	27569579
5-9	12180280	12992422	25172702	13316752	14194680	27511432	14489485	15434510	29923994
10-14	12401887	13191028	25592915	13555770	14401359	27957128	14746329	15648647	30394976
15-19	12104354	12786745	24891099	13223171	13941474	27164645	14377279	15130214	29507493
20-24	12009183	12682058	24691242	13111919	13819857	26931777	14249111	14990893	29240004
25-29	11401306	11801601	23202908	12440364	12858092	25298457	13511429	13945479	27456908
30-34	11227453	11462437	22689891	12237689	12476428	24714118	13278146	13519284	26797430
35-39	11831458	11912845	23744303	12870369	12934804	25805173	13938240	13983382	27921622
40-44	11046075	11030765	22076840	11969730	11912161	23881890	12914834	12810864	25725699
45-49	9840002	9754969	19594971	10596306	10431005	21027311	11364163	11111356	22475519
50-54	8492256	8348031	16840287	9056268	8774297	17830565	9621331	9190897	18812228
55-59	6834429	6484143	13318572	7169886	6629563	13799449	7497169	6758891	14256059
60-64	5170145	4909971	10080116	5257537	4805154	10062692	5332741	4692566	10025308
65-69	3146510	3079669	6226179	3017926	2803915	5821841	2890077	2549754	5439831
70-74	1858248	1530972	3389220	1597498	1231043	2828541	1373099	990010	2363110
75+	2003258	1451447	3454705	1463761	970952	2434713	1071609	651053	1722661
Total	143340006	145376136	288716143	153591212	154905466	308496679	164339248	165293172	329632420
		MK	269466871			263151321			258244120
	SELISIH	MC - MK	19249272			45345357			71388300

Lanjutan

Kelompok umur	WNT2040	LK 2040	TOT2040	WNT2045	LK2045	TOT2045
	(11)	(12)	(13)	(14)	(15)	(16)
0-4	14749199	14969573	29718772	15896609	16136849	32033459
5–9	15732145	16747633	32479779	17048036	18137386	35185422
10-14	16007778	16968970	32976748	17343413	18365527	35708940
15-19	15599911	16387582	31987493	16894137	17716334	34610472
20-24	15453581	16229341	31682922	16728230	17537791	34266020
25-29	14645504	15095511	29741015	15845195	16310547	32155742
30-34	14379106	14621611	29000717	15542895	15785478	31328372
35-39	15066524	15089821	30156345	16257222	16255730	32512952
40-44	13910003	13754783	27664786	14956376	14744428	29700804
45-49	12168097	11819356	23987453	13008202	12554212	25562414
50-54	10207528	9616465	19823993	10813956	10049205	20863161
55-59	7831330	6885729	14717060	8170748	7008184	15178931
60-64	5406244	4581663	9987907	5476306	4470717	9947023
65-69	2768188	2319663	5087851	2650622	2110056	4760679
70-74	1181620	797291	1978912	1017242	642440	1659683
75+	786611	437851	1224462	578242	294956	873197
Total	175893370	176322844	352216214	188227431	188119839	37634727
		MK	253981656			250289368
	SELISIH	MC-MK	98234558			126057903

Sumber: Hasil Pengolahan

Selisih proyeksi antara metode campuran dan komponen per 5 tahun dari tahun 2025-2045 berturut turut sebesar 19.249.272 orang, 45.345.357 orang, 71.388.300 orang, 98.234.558 orang, 126.057.903 orang.

D. Kesimpulan

Proyeksi penduduk Indonesia tahun 2025, 2030, 2035, 2040, 2045 dengan metode campuran berturut turut sebesar 288.716.143 orang, 308.496.679 orang, 329.632.420 orang, 352.216.214 orang, 376.347.271 orang.

Setiap perhitungan proyeksi akan berbeda apabila data dasar dan asumsi yang digunakan berbeda. Perhitungan evaluasi kesalahan proyeksi pada metode komponen lebih dipengharuhi oleh proporsi penduduk menurut kelompok umur.

Acknowledge

We grateful and thank you of the Committe Seminar Penelitian Sivitas Akademika UNISBA (SpeSIA) until the end.

Daftar Pustaka

- [1] BPS. (2018). Proyeksi Penduduk Indonesia 2015-2045 Hasil SUPAS 2015. Jakarta.
- [2] BPS. (2010). Pedoman Penghitungan Proyeksi Penduduk dan Angkatan Kerja. Jakarta.
- [3] Karyana, Y. (2010). *Pengantar Matematika Demografi*. Bandung: Pustaka Ceria, Yayasan PENA.
- [4] Wildan, Karyana, Y. (2021). Evaluasi Kesalahan Proyeksi Penduduk Tahun 2020 untuk Memproyeksikan Penduduk Tahun 2025 Provinsi Jawa Barat. Jurnal Riset Statistika. 1(2). 92-98