Sintesis Heksapeptida Siklik Analog Pipecolisporin sebagai Kandidat Antimalaria

  • Nazilah Alifah Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
  • Nety Kurniaty Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
  • Rani Maharani Universitas Padjajaran
Keywords: Malaria, Sintesis Peptida, Heksapeptida Siklik

Abstract

Abstract. Malaria remains a global challenge with a significant increase in cases in various countries, including Indonesia. The resistance of Plasmodium falciparum to conventional antimalarial drugs has created an urgent need for new effective therapies. This study aims to synthesize cyclic hexapeptide analogs based on pipecolisporin (Ile – β-Ala – Trp – Pip – Arg – Pro) as potential antimalarial candidates. The method employed combines Solid Phase Peptide Synthesis (SPPS) to produce linear hexapeptides and Liquid Phase Peptide Synthesis (LPPS) for cyclization. The HATU-HOAt reagent was chosen for its ability to enhance efficiency and reduce the risk of epimerization during synthesis. The analog structure was designed by substituting leucine (Leu) residues with arginine (Arg) to optimize the balance between cationic properties and hydrophobicity relevant to antimalarial activity. The synthesis was carried out until the target compound was obtained, which was then characterized using HR-ToF-MS mass spectrometry, showing the presence of a molecular ion peak at m/z [M+H]+ 735.5688, corresponding to the calculated mass of m/z [M+H]+ 734.90. The results of the study demonstrate that pipecolisporin analogs can be successfully synthesized using this combined method.

Abstrak. Penyakit malaria masih menjadi tantangan global dengan peningkatan angka kasus yang signifikan di berbagai negara, termasuk Indonesia. Resistensi Plasmodium falciparum terhadap obat antimalaria konvensional menimbulkan kebutuhan mendesak akan terapi baru yang efektif. Penelitian ini bertujuan untuk mensintesis analog heksapeptida siklik berbasis pipecolisporin (Ile – β-Ala – Trp – Pip – Arg – Pro) sebagai kandidat antimalaria. Metode yang digunakan adalah kombinasi Solid Phase Peptide Synthesis (SPPS) untuk membentuk heksapeptida linier dan Liquid Phase Peptide Synthesis (LPPS) untuk proses siklisasi. Reagen HATU-HOAt dipilih karena kemampuannya meningkatkan efisiensi dan mengurangi risiko epimerisasi selama sintesis. Struktur analog dirancang dengan substitusi residu leusin (Leu) menjadi arginin (Arg) untuk meningkatkan keseimbangan antara sifat kationik dan hidrofobisitas yang relevan dengan aktivitas antimalaria. Sintesis dilakukan hingga diperoleh senyawa target, yang kemudian dikarakterisasi menggunakan spektrometri massa HR-ToF-MS menunjukkan adanya puncak ion molekul pada m/z [M+H]+ 735.5688, yang sesuai dengan massa yang dihitung pada m/z [M+H]+ 734.90. Hasil penelitian menunjukkan bahwa analog pipecolisporin dapat disintesis dengan baik menggunakan metode kombinasi tersebut.

References

Al-Warhi, T. I., Al-Hazimi, H. M. A., & El-Faham, A. (2012). Recent development in peptide coupling reagents. Journal of Saudi Chemical Society, 16(2), 97–116. https://doi.org/10.1016/j.jscs.2010.12.006
Bechtler, C., & Lamers, C. (2021). Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Medicinal Chemistry, 12(8), 1325–1351. https://doi.org/10.1039/d1md00083g
Carpino, L. A., Shroff, H., Triolo, S. A., Mansour, E. S. M. E., Wenschuh, H., & Albericio, F. (1993). The 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron Letters, 34(49), 7829–7832. https://doi.org/10.1016/S0040-4039(00)61487-9
Chan, W.C. & White, P.D. (2000) Fmoc Solid Phase Peptide Synthesis: A Practical Approach. B. D. Hames, ed. Oxford: Oxford University Press.
Craik, D. J., Fairlie, D. P., Liras, S., & Price, D. (2013). The Future of Peptide-based Drugs. Chemical Biology and Drug Design, 81(1), 136–147. https://doi.org/10.1111/cbdd.12055
Distantina, S. (1988). Ekstraksi cair-cair.
El-Faham, A., & Albericio, F. (2011). Peptide coupling reagents, more than a letter soup. Chemical Reviews, 111(11), 6557–6602. https://doi.org/10.1021/cr100048w
Fernández-Pastor, I., González-Menéndez, V., Annang, F., Toro, C., Mackenzie, T. A., Bosch-Navarrete, C., Genilloud, O., & Reyes, F. (2021). Pipecolisporin, a novel cyclic peptide with antimalarial and antitrypanosome activities from a wheat endophytic nigrospora oryzae. Pharmaceuticals, 14(3), 0–8. https://doi.org/10.3390/ph14030268
Hayes, H. C., Luk, L. Y. P., & Tsai, Y. H. (2021). Approaches for peptide and protein cyclisation. Organic and Biomolecular Chemistry, 19(18), 3983–4001. https://doi.org/10.1039/d1ob00411e
Hidayah, W. W., Kusrini, D., & Fachriyah, E. (2016). Isolasi, Identifikasi Senyawa Steroid dari Daun Getih-Getihan (Rivina humilis L.) dan Uji Aktivitas sebagai Antibakteri. Jurnal Kimia Sains Dan Aplikasi, 19(1), 32. https://doi.org/10.14710/jksa.19.1.32-37
Jensen, K. J. (2013). Solid-phase peptide synthesis: an introduction. In K. J. Jensen, P. T. Shelton, & S. L. Pedersen (Eds.), Peptide Synthesis and Applications (pp. 1–21). Humana Press
Kemenkes RI. (2019). Pedoman Nasional Pelayanan Kedokteran Tata Laksana Malaria. Kementerian Kesehatan RI, 8(5), 55. https://drive.google.com/file/d/1WjOIW0ZqMeWNYBLC1iJ9bpkQGH8JjSli/viewA. Shimp T. Periklanan Promosi: Aspek Tambahan Komunikasi Pemasaran Terpadu. 5th ed. Jakarta: Erlangga; 2000.
Luong, H. X., Thanh, T. T., & Tran, T. H. (2020). Antimicrobial peptides – Advances in development of therapeutic applications. Life Sciences, 260(June), 118407. https://doi.org/10.1016/j.lfs.2020.118407
Luna, O. F., Gomez, J., Cárdenas, C., Albericio, F., Marshall, S. H., & Guzmán, F. (2016). Deprotection reagents in Fmoc solid phase peptide synthesis: Moving away from piperidine? Molecules, 21(11), 1–12. https://doi.org/10.3390/molecules21111542
Maharani, R., Octavia, S. M., Zainuddin, A., Hidayat, A. T., Sumiarsa, D., Harneti, D., Nurlelasari, N., & Supratman, U. (2020). Sintesis Tetrapeptida PSWY dan PSKY Fase Padat dan Evaluasi Aktivitas Antioksidannya. Chimica et Natura Acta, 8(3), 109. https://doi.org/10.24198/cna.v8.n3.32205
Muhajir, M. I., Hardianto, A., Al‐Anshori, J., Sumiarsa, D., Mayanti, T., Nurlelasari, ... & Maharani, R. (2021). Total Synthesis of Nocardiotide A by Using a Combination of Solid‐and Solution‐Phase Methods. ChemistrySelect, 6(45), 12941-12946.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Nazhid, Arjun Rizky Mahendra., & Wulandari, Savitri. (2023). Mengulas Eliminasi Malaria Urgensi Perbaikan Tata Kelola Badan Riset dan Inovasi Nasional sebagai Upaya Meningkatkan Riset dan Inovasi Peluang Pengembangan Pariwisata Kesehatan di Dewan Redaksi Urgensi Perbaikan Tata Kelola Badan Riset dan Inovasi Peluang. VIII. Djaslim S. Intisari Pemasaran dan Unsur-unsur Pemasaran. Bandung: Linda Karya; 2003.
Spears, R. J., McMahon, C., & Chudasama, V. (2021). Cysteine protecting groups: Applications in peptide and protein science. Chemical Society Reviews, 50(19), 11098–11155. https://doi.org/10.1039/d1cs00271f
Thieriet, N., Guibé, F., & Albericio, F. (2000). Solid-phase peptide synthesis in the reverse (N → C) direction. Organic Letters, 2(13), 1815–1817. https://doi.org/10.1021/ol0058341
Wahyuningrum, R., Cahyono, E., & Siadi, K. (2012). Kinetika Reaksi Siklisasi-Asetil Sitronelal menjadi Isopulegil Asetat Terkatalisis Zr4+ Zeolit Beta. Indonesian Journal of Chemical Science, 1(2), 116–121.
Wang, L., Dong, C., Li, X., Han, W., & Su, X. (2017). Anticancer potential of bioactive peptides from animal sources (Review). Oncology Reports, 38(2), 637–651. https://doi.org/10.3892/or.2017.5778
Wu, Z. C., Li, S., Nam, S. J., Liu, Z., & Zhang, C. (2013). Nocardiamides A and B, two cyclohexapeptides from the marine-derived actinomycete Nocardiopsis sp. CNX037. Journal of Natural Products, 76(4), 694–701. https://doi.org/10.1021/np400009a
Züllig, T., & Köfeler, H. C. (2021). High Resolution Mass Spectrometry in Lipidomics. Mass Spectrometry Reviews, 40(3), 162–176. https://doi.org/10.1002/mas.21627
Published
2025-01-28