Studi Literatur Pengembangan Liposom Sebagai Brain Targeting Drug Delivery System (BTDDS)

  • Almirah Azis Prodi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
  • Aulia Fikri Hidayat Prodi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandungaulia.fikri.h@gmail.com
  • Sani Ega Priani Prodi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandungaulia.fikri.h@gmail.com
Keywords: Brain Targeting Drug Delivery System, Liposom

Abstract

Abstract. The development of methods to improve drug delivery used in life-threatening diseases such as cancer and viral infections is urgently needed today. One alternative to drug delivery to the brain is to use a transport system or carrier designed to target drugs to the central nervous system with a system of vesicles in delivery, one of which is liposomes. The use of liposomes as drug carriers to the central nervous system (CNS) has become one of the most researched strategies for improving the treatment of brain diseases. The purpose of this study is to find out how the formulation and characteristics of liposome-based drug carrier systems that can increase drug  penetration through the blood-brain barrier  (BBB) and find out how the effect of liposome carrier system development on the penetration of several drugs through BBB. The research methodology to be used is Systematic Literarture Review (SLR). The inclusion criteria set in article screening include research articles related to the development of liposomes as brain-targeted drug carriers, research articles that have been published in the last 10 years (2014-2024), research articles that can be accessed (full text), and articles in English. The results showed that the formulation and characteristics of liposome-based drugs  as drug delivery as a brain targeting drug delivery system  (BTDDS) have a modified liposome membrane composition and the influence of the development of liposome carrier systems on the penetration of several drugs through BBB that liposomes can function as a new drug delivery system with low toxicity and good biocompatibility.

Abstrak. Pengembangan metode untuk meningkatkan pemberian obat yang digunakan dalam penyakit yang mengancam jiwa seperti kanker dan infeksi virus sangat dibutuhkan saat ini. Salah satu alternatif penghantaran obat ke otak adalah dengan menggunakan sistem transportasi atau pembawa yang dirancang untuk menargetkan obat ke sistem saraf pusat dengan sistem vesikel dalam persalinan, salah satunya liposom. Penggunaan liposom sebagai pembawa obat ke sistem saraf pusat (SSP) telah menjadi salah satu strategi yang paling banyak diteliti untuk meningkatkan pengobatan penyakit otak. Tujuan dari penelitian ini adalah untuk mengetahui bagaimana formulasi dan karakteristik sistem pembawa obat berbasis liposom yang dapat meningkatkan penetrasi obat melalui sawar darah-otak (BBB) dan mengetahui bagaimana pengaruh pengembangan sistem pembawa liposom terhadap penetrasi beberapa obat melalui BBB. Metodologi penelitian yang akan digunakan adalah Systematic Literarture Review (SLR). Kriteria inklusi yang ditetapkan dalam article screening meliputi artikel penelitian terkait pengembangan liposom sebagai pembawa obat target otak, artikel penelitian yang telah dipublikasikan dalam 10 tahun terakhir (2014-2024), artikel penelitian yang dapat diakses (full text), dan artikel dalam bahasa Inggris. Hasil penelitian menunjukkan bahwa formulasi dan karakteristik obat berbasis liposom sebagai drug delivery sebagai brain targeting drug delivery system (BTDDS) memiliki komposisi membran liposom yang dimodifikasi dan pengaruh pengembangan liposome carrier system terhadap penetrasi beberapa obat melalui BBB sehingga liposom dapat berfungsi sebagai sistem penghantaran obat baru dengan toksisitas rendah dan biokompatibilitas yang baik.

References

Aijaz, S., Balda, M. S., & Matter, K. (2006). Tight Junctions: Molecular Architecture and Function. In International Review of Cytology, 248, 261–298. https://doi.org/10.1016/S0074-7696(06)48005-0

Ajazuddin, & Saraf, S. (2010). Applications of novel drug delivery system for herbal formulations. Fitoterapia, 81(7), 680–689. https://doi.org/10.1016/j.fitote.2010.05.001

Anwekar, H., Patel, S. S., & Singhai, A. (2011a). Liposom-sebagai Pembawa Obat. Int. J. of Pharm. & Life Sci. (IJPLS), 2(7), 945–951.

Anwekar, H., Patel, S., & Singhai, A. K. (2011b). Liposome-as drug carriers. Int. J. of Pharm. & Life Sci. (IJPLS), 2(7), 945–951.

Applegate, E. (2010). The Sectional Anatomy Learning System (3rd ed.). Jeane Olson.

Budiarsa, I. K., Susilawathi, N. M., Yaputra, F., & Widyadharma, I. P. E. (2019). SAWAR OTAK. Callosum Neurology, 2(1), 14–18. https://doi.org/10.29342/cnj.v2i1.54

Citi, S. (1993). The molecular organization of tight junctions. The Journal of Cell Biology, 121(3), 485–489. https://doi.org/10.1083/jcb.121.3.485

Crommelin, D. J. A., & Florence, A. T. (2013). Towards more effective advanced drug delivery systems1. International Journal of Pharmaceutics, 454(1), 496–511. https://doi.org/10.1016/j.ijpharm.2013.02.020

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. In Pharmaceutics (Vol. 10, Issue 2). MDPI AG. https://doi.org/10.3390/pharmaceutics10020057

Ganong, W. F. (2003). Buku Ajar Fisiologi Kedokteran (20th ed.). EGC.

Garnett, M. C. (2001). Targeted drug conjugates: principles and progress. Advanced Drug Delivery Reviews, 53(2), 171–216. https://doi.org/10.1016/S0169-409X(01)00227-7

Itoh, M., Sasaki, H., Furuse, M., Ozaki, H., Kita, T., & Tsukita, S. (2001). Junctional adhesion molecule (JAM) binds to PAR-3. The Journal of Cell Biology, 154(3), 491–498. https://doi.org/10.1083/jcb.200103047

Jeon, M., Kim, G., Lee, W., Baek, S., Jung, H. N., & Im, H.-J. (2021). Development of theranostic dual-layered Au-liposome for effective tumor targeting and photothermal therapy. Journal of Nanobiotechnology, 19(1), 262. https://doi.org/10.1186/s12951-021-01010-3

Joseph, E., & Singhvi, G. (2019). Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy (pp. 91–116). Elsevier. https://doi.org/10.1016/B978-0-12-816505-8.00007-2

Khan, A. R., Yang, X., Fu, M., & Zhai, G. (2018). Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 291, 37–64. https://doi.org/10.1016/j.jconrel.2018.10.004

Kyle, S., & Saha, S. (2014). Nanotechnology for the Detection and Therapy of Stroke. Advanced Healthcare Materials, 3(11), 1703–1720. https://doi.org/10.1002/adhm.201400009

Laksitorini, M. D., Yathindranath, V., Xiong, W., Parkinson, F. E., Thliveris, J. A., & Miller, D. W. (2021). Impact of Wnt/β‐catenin signaling on ethanol‐induced changes in brain endothelial cell permeability. Journal of Neurochemistry, 157(4), 1118–1137. https://doi.org/10.1111/jnc.15203

Lasch, J., Weissig, V., & Brandl, M. (2003). Preparation of liposomes In Liposomes: A Practical Approach,. Oxford University Press.

Lombardo, D., & Kiselev, M. A. (2022). Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics, 14(3), 543. https://doi.org/10.3390/pharmaceutics14030543

Manish, G., & Vimukta, S. (2011). Targeted drug delivery system: A Review. Research Journal of Chemical Sciences, 1(2), 135–138.

Martìn-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., & Dejana, E. (1998). Junctional Adhesion Molecule, a Novel Member of the Immunoglobulin Superfamily That Distributes at Intercellular Junctions and Modulates Monocyte Transmigration. The Journal of Cell Biology, 142(1), 117–127. https://doi.org/10.1083/jcb.142.1.117

Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., & Tsukita, S. (2003). Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. The Journal of Cell Biology, 161(3), 653–660. https://doi.org/10.1083/jcb.200302070

Noback, C. R., Strominger, N. L., Demarest, R. J., & Ruggiero, D. A. (2005). The Human Nervous System. Humana Press. https://doi.org/10.1007/978-1-59259-730-7

Oldendorf, W. H. (1977). The blood-brain barrier. Experimental Eye Research, 25, 177–190. https://doi.org/10.1016/S0014-4835(77)80016-X

Pimentel, M., Saad, R. J., Long, M. D., & Rao, S. S. C. (2020). ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. American Journal of Gastroenterology, 115(2), 165–178. https://doi.org/10.14309/ajg.0000000000000501

Sorby-Adams, A., Marcoionni, A., Dempsey, E., Woenig, J., & Turner, R. (2017). The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury. International Journal of Molecular Sciences, 18(8), 1788. https://doi.org/10.3390/ijms18081788

Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., & Winnicka, K. (2016). Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. In International Journal of Polymer Science (Vol. 2016). Hindawi Limited. https://doi.org/10.1155/2016/7697031

Turksen, K., & Troy, T.-C. (2004). Barriers built on claudins. Journal of Cell Science, 117(12), 2435–2447. https://doi.org/10.1242/jcs.01235

Wang, G., Yang, Y., Yi, D., Yuan, L., Yin, P.-H., Ke, X., Jun-Jie, W., & Tao, M.-F. (2022). Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. Journal of Liposome Research, 32(3), 250–264. https://doi.org/10.1080/08982104.2021.1999974

Winarti, L. (2015). Sistem Penghantaran ObatTertarget Macam, Jenis-Jenis Sistem Penghantaran dan Aplikasinya. Jurnal Kedokteran Gigi, 10(2), 75–81.

Xiang, B., & Cao, D.-Y. (2018). Preparation of Drug Liposomes by Thin-Film Hydration and Homogenization. In Liposome-Based Drug Delivery Systems (pp. 1–11). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49231-4_2-1

Yadav, D., Sandeep, K., Pandey, D., & Dutta, R. K. (2017). Liposomes for Drug Delivery. Journal of Biotechnology & Biomaterials, 07(04). https://doi.org/10.4172/2155-952x.1000276

Yue, P., He, L., Qiu, S., Li, Y., Liao, Y., Li, X., Xie, D., & Peng, Y. (2014). OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Molecular Cancer, 13(1), 191. https://doi.org/10.1186/1476-4598-13-191

Yuliana, U., Sri, A., Mahadewa, B., & Gde, T. (2013). Tinjauan Histologi Sawar Darah Otak. E-Jurnal Medika Udayana, 2(9), 1–21.

Zhang, H. (2017). Thin-Film Hydration Followed by Extrusion Method for Liposome Preparation (pp. 17–22). https://doi.org/10.1007/978-1-4939-6591-5_2

Zulham. (2005). Sawar Darah Otak. Fakultas Kedokteran USU.

Published
2024-02-07