Studi Literatur: Status HIV dan Status Sensitivitas Obat pada Pasien Tuberkulosis Paru

  • Bagus Abimanyu Prodi Pendidikan Dokter, Fakultas Kedokteran, Universitas Islam Bandung, Indonesia
  • Heni Muflihah Fakultas Kedokteran, Universitas Islam Bandung
  • Rika Nilapsari Fakultas Kedokteran, Universitas Islam Bandung
Keywords: Tuberkulosis (TB), Tuberkulosis Sensitif Obat (TB-SO), Tuberkulosis Resistan Obat (TB-RO)

Abstract

Abstract. Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and remains one of the leading causes of death from infectious diseases. Standard TB treatment involves first-line drugs such as isoniazid, rifampin, ethambutol, and pyrazinamide, which are effective in drug-sensitive TB (DS-TB) cases. However, resistance to first-line drugs, known as drug-resistant TB (DR-TB), has become a major challenge in TB management. This study aims to review drug sensitivity status in pulmonary TB patients, focusing on the distribution of DS-TB and DR-TB, risk factors for resistance, and challenges in managing DR-TB. drug sensitivity status is a critical indicator for the success of TB treatment. While first-line treatment remains effective for most pulmonary TB patients, the increasing prevalence of DR-TB necessitates more comprehensive control strategies, including enhanced screening, improved treatment adherence, and the development of more advanced diagnostic methods. Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) are two interrelated infectious diseases and global health concerns. HIV-positive patients have a higher risk of developing active TB, including drug-sensitive TB (DS-TB) and drug-resistant TB (DR-TB), due to weakened immune systems.

Abstrak. Tuberkulosis (TB) adalah penyakit infeksi yang disebabkan oleh Mycobacterium tuberculosis dan tetap menjadi salah satu penyebab utama kematian akibat penyakit menular. Pengobatan TB standar menggunakan obat lini pertama seperti isoniazid, rifampisin, etambutol, dan pirazinamid, yang efektif pada kasus TB sensitif obat (TB-SO). Namun, resistensi terhadap obat lini pertama, yang dikenal sebagai TB resistan obat (TB-RO), telah menjadi tantangan utama dalam pengobatan. Penelitian ini bertujuan untuk mengulas status sensitivitas obat pada pasien TB paru, khususnya distribusi TB-SO dan TB-RO, faktor risiko resistensi, serta tantangan dalam penanganan TB-RO. Status sensitivitas obat adalah indikator penting untuk keberhasilan pengobatan TB. Meskipun pengobatan lini pertama masih efektif bagi sebagian besar pasien TB paru, meningkatnya kasus TB-RO memerlukan strategi pengendalian yang lebih komprehensif, termasuk penguatan skrining, peningkatan kepatuhan pengobatan, dan pengembangan metode diagnostik yang lebih canggih. Tuberkulosis (TB) dan Human Immunodeficiency Virus (HIV) adalah dua penyakit infeksi yang saling berkaitan dan menjadi masalah kesehatan global. Pasien HIV memiliki risiko lebih tinggi untuk mengembangkan TB aktif, baik TB sensitif obat (TB-SO) maupun TB resistan obat (TB-RO), karena lemahnya sistem imun.

References

1. World Health Organization. Global tuberculosis report 2023. 2023.
2. Kementerian Kesehatan Republik Indonesia. Pedoman Nasional Pelayanan Kedokteran. 2020.
3. Jang JG, Chung JH. Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam Univ J Med. 2020 Oct 31;37(4):277–85.
4. dr Maxi Rein Rondonuwu P, dr Laksono Trisnantoro M, Yudhi Pramono dr, dr Imran Pambudi M, dr Adi Utarini M, jawab dr Tiffany Tiara Pakasi P, et al. Laporan Tahunan Program TB Nasional Tahun 2022. 2022.
5. Kementerian Kesehatan Republik Indonesia. Laporan Program Penanggulangan Tuberkulosis Tahun 2022. 2023.
6. World Health Organization. HIV and AIDS [Internet]. 2023 Jul [cited 2024 Jan 16]. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids
7. World Health Organization. People living with HIV People acquiring HIV People dying from HIV-related causes [Internet]. 2023. Available from: https://apps.who.int/iris/handle/10665/360348,
8. Kementerian Kesehatan Republik Indonesia. Laporan Tahunan HIV AIDS 2022. 2023.
9. Lee S, Lee SH, Mok JH, Lee SJ, Kim KH, Lee JE, et al. Is multi-drug resistant tuberculosis more prevalent in HIV-infected patients in Korea? Yonsei Med J. 2016 Nov 1;57(6):1508–10.
10. Sultana ZZ, Hoque FU, Beyene J, Akhlak-Ul-Islam M, Khan MHR, Ahmed S, et al. HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2021 Dec 1;21(1).
11. Adigun R, Singh R. Tuberculosis [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441916/
12. Silva DR, Muñoz-Torrico M, Duarte R, Galvão T, Bonini EH, Arbex FF, et al. Risk factors for tuberculosis: Diabetes, smoking, alcohol use, and the use of other drugs. Vol. 44, Jornal Brasileiro de Pneumologia. Sociedade Brasileira de Pneumologia e Tisiologia; 2018. p. 145–52.
13. Kementerian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia. 2016.
14. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2019 Oct 28;16(5):442–9.
15. Vaillant AAJ, Peter ;, Gulick G. HIV and AIDS Syndrome Continuing Education Activity [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534860/
16. Raviglione MC, Gori A. Harrison’s Principles of Internal Medicine. 2022.
17. Padda IS, Kona ;, Reddy M. Antitubercular Medications [Internet]. 2023 Jun. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557666/
18. Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, et al. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. Vol. 43, FEMS Microbiology Reviews. Oxford University Press; 2019. p. 548–75.
19. Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep. 2017 Dec 1;7(1).
20. Desalegn Weldeyohannes DD. Review on Molecular Mechanism of First Line Antibiotic Resistance in Mycobacterium tuberculosis. Mycobacterial Diseases. 2014;04(06).
21. Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: A systematic review. PLoS One. 2015 Mar 23;10(3).
22. Sun ET, Xia D, Li BH, Ma J, Dong YY, Ding SS, et al. Association of immune factors with drug-resistant tuberculosis: A case-control study. Medical Science Monitor. 2017 Nov 9;23:5330–6.
23. de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr. 2019 Aug 27;7.
24. Da Silva M V., Massaro Junior VJ, Machado JR, Silva DAA, Castellano LR, Alexandre PBD, et al. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in mycobacterium-specific Th1, Th2, and Th17 cells. Biomed Res Int. 2015;2015.
25. World Health Organization. WHO operational handbook on tuberculosis Drug-resistant tuberculosis treatment 2022 update.
26. Center for Disease Control and Prevention. TB and HIV Coinfection [Internet]. 2016 [cited 2024 Feb 28]. Available from: https://www.cdc.gov/tb/esp/topic/basics/tbhivcoinfection.htm
27. Clinical Info HIV. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV [Internet]. Available from: https://clinicalinfo.hiv.gov/
28. Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV–Host Cell Interactions. Vol. 12, Cells. MDPI; 2023.
Published
2025-02-01